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Outline of the Tutorial

9:00-10:30

- Economics of a giant pile of compute resources
- Spot markets and reservations

10:30-11:00

- Coffee Break

11-12:30

- Concrete resources & beyond compute

- Future of cloud economics



The Cloud






The promise of the cloud
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- Infinite resources!
- Pay only for what you need!

Image license d by Yau Hoong Tang CC BY-NC-ND 2.0



Public Cloud DC
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Fconomics of a
Datacenter




Why have a cloud?

Utilization

- On prem:
- 5-10% - IDC / VMWare 2009
-+ 12-18% - NRDC 2014
-+ <20 percent — AWS Blog 2015



Reasons for low utilization

FIG. 6: RANDOM VARIABILITY (EXCHANGE SERVER)
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Source: Microsoft.

"The Economics of the Cloud" Harms and Yamartino 2010



Reasons for low utilization

FIG. 7: TIME-OF-DAY PATTERNS FOR SEARCH
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"The Economics of the Cloud" Harms and Yamartino 2010



Reasons for low utilization

‘ FIG. 8: INDUSTRY-SPECIFIC VARIABILITY
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"The Economics of the Cloud" Harms and Yamartino 2010



Reasons for low utilization

FIG. 9: MULTIRESOURCE VARIABILITY (ILLUSTRATIVE)
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Reasons for low utilization
m

7,500 -+

I Overprovisioning

1 2 3 4 5 6 7 8 9 10 11 12
Months from Planning Date

Expected Upside Buffer

Source: Microsoft.

"The Economics of the Cloud" Harms and Yamartino 2010



(New) reasons for low utilization

- Not yet in steady state

- Capacity is discrete



The cloud solves utilization?

- Opportunities are real
- But exploiting them requires solving hard problems

- Coordination

- Information

- Re-engineering
+ Pricing

- Better but still low: AWS claims 65%, but is that billed
or real?



Fixed Costs vs Marginal Costs




Cloud Fixed Costs?

+ Servers

- Infrastructure: Racks, Cabling, Cooling
- Building

- Lana

- Software

- Labor




Cloud Marginal Costs

- Power
- Cooling
- Software Licensing



Economics of Competition

- Bertrand Competition — decide on price

- Software

- Cell Phones
- Restaurants
- Airlines?

- Cournot Competition — decide on quantity

- Agriculture
- Oil
- Hotel Rooms



Public cloud is profitable!

SEGMENT REVENUE AND OPERATING INC

(In millio Uns

Three Months Ended
March 31,
2018

Revenue
Productivi d Busi s $10,242
9,649

10,680

Total $30,571
Operating Income

$3,979
3,208
3,154

510,341

$30,113
27,594
34,419

$92,126

$11,875
9,418

9,261

$30,554

Nine Months Ended
March 31,
2018




Price Matching

The Power of ‘And’

Posted on April 16, 2013

e Microsoft Azure

Announcing Infrastructure Services GA and New Price Commitment

Today is an exciting day for Microsoft, Windows Azure and all of our customers around the world. | am very pleased to
announce the general availability of Windows Azure Infrastructure Services. This new service now makes it possible for
customers to move applications into the cloud. Our announcement today is a significant step in our cloud computing
strategy, which has been influenced directly by our discussions with customers and partners around the world.
Throughout these conversations, one thing holds true in every discussion - enterprises know that success with the
cloud lies in the power of “and.” Customers don't want to rip and replace their current infrastructure to benefit from
the cloud; they want the strengths of their on-premises investments and the flexibility of the cloud. It's not only about
Infrastructure as a Service (laaS) or Platform as a Service (PaaS), it's about Infrastructure Services and Platform

Services and hybrid scenarios. The cloud should be an enabler for innovation, and an extension of your organization’s
IT fabric, not just a fancier way to describe cheap infrastructure and application hosting Customers have also told me
that they don't want to have to choose either a low price or good performance; they want a low price and good
performance. That's why today we are also announcing a commitment to match Amazon Web Services prices for
commodity services such as compute, storage and bandwidth. This starts with reducing our GA prices on Virtual




Other benefits?

Direct costs Indirect costs

_ | Hardware(Server, Storage) - Rack, Shared storage costs |
Material - Software(OS, database) - Networking infrastructure
e —

Labor - DB/OS Maintenance service - Staff Salary
..............................................................................................E-.-.-.-.-.-.-.-.-.-.-.-.-...-.-.-.-.-.....-.-.-.-.-...-.-.-.-.-...-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-...-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-...-.-.-.-.-.-.-.-.-.-.....:'

Quantifiable

Electricity consumed by

Expenses the application servers - Electricity used b

- Usage charge of cloud storage, cooling, Yighting

- Software porting efforts - Performance changes
- Application migration efforts - Possible security vulnerability
- More application complexity - Various time delay

quantifiable

Figure 1: Classification of costs related to migration.

“To Move or Not to Move” Tak, Urgaonkar, Sivasubramaniam 2011



Fconomies of scale

- Cheaper power / cooling — locate where it is cheap
- Buying power — power, hardware, software, capital, ...
- Automation



renting a VM



3 Google Cloud Why Google Solutions Products Pricing Getting started Support  Language *  Signin

Database Products Contact sales

MySQL Second Generation pricing Contents

MySQL Second
Generation pricing

Cloud SQL

Product overvi o .
TocHcE charviam: Second Generation pricing is composed of the following charges:

Database engine choices Instance Pricing
MySQL * Instance pricing Storage and
PostgreSQL + Storage pricing :j‘:gl_”::i;r:m
Generation pricing

+ Network pricing examples

Concepts
All concepts PostgreSOL pricing

Cloud SQL features Instance Pricing Instance pricing
Launch checklist CPU and memory
Instance pricing for Second Generation is charged for every minute that the instance is running (the activation policy is pricing

Storage and

Support set to ALWAYS ). The charge depends on the machine type you choose for the instance, and the region where the )
networking pricing

inst is located. Select ion f the dropd the pricing table.
All support instance is located. Select your region from the dropdown on the pricing table PostgresaL Instance

Getting support ) . . . pricing examples
Read replicas and failover replicas are charged at the same rate as stand-alone instances. ) )
MySOL First Generation

pricing

Billing questions

Packages Billing Plan
Resources lowa (us-centrall) ~ Monthly Hourly 9 N

Per-Use Billing Plan
All resources

e Network Use
Pricing

Read replicas

RAM Maximum Sustained Use Instance IPvd
::I:ase notes Machine Type Virtual CPUs (GB) Connections Price (USD) Price (USD) addresses

What's next?
Database version policies
Operational guidelines db-f1-micro” Shared . 3,062 GB $0.0150 $0.0105

Quotas and limits

Service Level Agreement
db-g1-small” Shared . 3,062 GB $0.0500 $0.0350

db-n1-standard-1 . 10,230 GB S0.0965 $0.0676

db-n1-standard-2 . 10,230 GB $0.1930 50.1351




2 Google Cloud ~ wnyG

Data Analytics Products

BigQuery best practices

Tutorials
All tutorials

Creating an Authorized View in
BigQuery

Downloading BigQuery data to
pandas

Visualizing BigQuery Data Using
Google Data Studio

Visualizing BigQuery Data in a Jupyter
Notebook

Importing Firebase Event Logs into
BigQuery

Real-time logs analysis using Fluentd
and BigQuery

Analyzing Financial Time Series using
BigQuery

Resources

All resources

Pricing
BigQuery pricing
BigQuery Data Transfer Service
pricing

Quotas & limits

Release notes

Support & troubleshooting

Public datasets

Commercial datasets

Salution providers

Service Level Agreement

Pricing Get i O\ Docs Support

Contact sales

Overview

BigQuery offers scalable, flexible pricing options to meet your technical needs and your budget.
Storage costs are based on the amount of data stored in BigQuery. Storage charges can be:

+ Active — A monthly charge for data stored in tables or in partitions that have been modified in the last 90 days.

+ Long-term — A lower monthly charge for data stored in tables or in partitions that have not been modified in the last
90 days.

For guery costs, you can choose between two pricing models:

+ On-demand — This is the most flexible option. On-demand pricing is based on the amount of data processed by
each query you run.

+ Flat-rate — This predictable pricing option is best for customers with fixed budgets. Flat-rate customers purchase
dedicated resources for query processing and are not charged for individual queries.

For more information on storage and query pricing, see Google Cloud Platform SKUs. Note that on-demand query pricing
is referred to as analysis pricing on the SKUs page.

Pricing summary

The following table summarizes BigQuery pricing. BigQuery's Quotas and limits apply to these operations.

US (multi-region) Monthly

Operation Pricing Details

Language ~

Contents
Overview
Pricing summary

How charges are
billed

How to analyze killing
data

Free operations

Always free usage

limits

Query pricing
On-dernand pricing

On-demand query
cost controls

Flat-rate pricing
Storage pricing

Active storage

Long-term storage
BigQuery Storage API
pricing

On-dermand pricing

Flat-rate pricing
Data size calculation
Streaming pricing

Data Manipulation
Language pricing

DML pricing for
non-partitioned
tables

DML pricing for

partitioned tables
Data Definition
Language pricing

Try free



Hadoop
- [aaS: Get a bunch of VMs and install Hadoop

- PaaS: Amazon EMR

- SaaS?: Cloudera
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[FIG. 17: CAPTURING CLOUD BENEFTS

Traditional IT
Applications Applications Applications Applications
Data Data Data Data
Runtime Runtime i Runtime Runtime

Middleware Middleware w Middleware ':_'__' Middleware

oIs ors ors 2 ors

Virtualization Virtualization Virtualization Virtualization
Servers Servers Servers = Servers
Storage Storage = Storage Storage

Networking a Networking | Networking Networking

Source: Microsoft.

"The Economics of the Cloud" Harms and Yamartino 2010



aws

S —

Products

Solutions

Pricing Documentation Learn Partner Network AWS Marketplace

Amazon EC2 Overview Features Pricing Instance Types FAQs

On-Demand

With On-Demand instances, you pay for compute capacity by per hour or per second
depending on which instances you run. No longer-term commitments or upfront payments
are needed. You can increase or decrease your compute capacity depending on the
demands of your application and only pay the specified per hourly rates for the instance

you use.

On-Demand instances are recommended for:

+ Users that prefer the low cost and flexibility of Amazon EC2 without any up-front
payment or long-term commitment

+ Applications with short-term, spiky, or unpredictable workloads that cannot be

interrupted

+ Applications being developed or tested on Amazon EC2 for the first time

See On-Demand pricing »

Reserved Instances

Reserved Instances provide you with a significant discount {up to 75%) compared to On-
Demand instance pricing. In addition, when Reserved Instances are assigned to a specific
Availability Zone, they provide a capacity reservation, giving you additional confidence in
your ability to launch instances when you need them.

Getting Started

Contact Sales Support * English =

Explore More Q

Resources ~

Spot instances

Amazon EC2 Spot instances allow you to request spare Amazon EC2 computing capacity for
up to 90% off the On-Demand price. Learn More.

Spot instances are recommended for:

+ Applications that have flexible start and end times
+ Applications that are only feasible at very low compute prices

« Users with urgent computing needs for large amounts of additional capacity

See Spot pricing »

Dedicated Hosts

A Dedicated Host is a physical EC2 server dedicated for your use. Dedicated Hosts can help
you reduce costs by allowing you to use your existing server-bound software licenses,
including Windows Server, SQL Server, and SUSE Linux Enterprise Server (subject to your

license terms), and can also help you meet compliance requirements. Learn more.

Create an AWS Account



Spot Markets



Fasy 100% Utilization




Should there be a spot market?

Trade-offs of operating a spot market

v'Low value jobs can compete % Cheaper alternative to PAYG.

v Revenue gain from jobs who % Revenue loss from jobs who
find PAYG price too high would have paid PAYG price




Low prices!

o
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On-demand Price

On-demand Price

Spot Market Price
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Figure 1: The variation in Amazon EC2 spot market prices
for ’large’ computing instances in the US East-coast region:
Linux (left) and Windows (right). The fixed on-demand price
for Linux and Windows instances is 0.34 and 0.48, respectively.

“On-demand, Spot, or Both” Menache, Shamir, Jain 2014



People are Rational

- "On-demand, Spot, or Both” Menache, Shamir, Jain
2014

- "Bidding Strategies for Spot Instances” Karunakaran
and Sundarraj 2015

- “Supercloud” van Renesse, Weatherspoon, Shen,

Song 2018
LN

spotinst

EXOTANIUM



A Cautionary Tale...

10. EPILOGUE

Amazon’s EC2 spot instance pricing mechanism underwent a radical change between
the first submission of this paper and its first acceptance. Several days after its ac-
ceptance, the spot instance prices underwent another extre L.hange, and the pric-
ing band disappeared from the traces altogether. For example, in the trace shown in
Fig. 14, the spot price is constant throughout October 2011, except for a change in
the minimal price. While these radical qualitative changes are further evidence of the
former prices being artificially set, the October prices are consistent with a constant
minimal price auction, and are no longer consistent with an AR(1) hidden reserve
price.

e.m1.large

Paper rejected,
Tech report published,
Twee -Tweeted

End of data 1o thaousands of people

used for the paper
First paper
submitted
Paper accepted

Time (Months of 2011)

ig. 14. The history of this paper and the price trace of suse.m1.large on us-east during 2011

“Deconstructing Amazon EC2 Spot Instance Pricing” Ben-Yehuda et al. 2012



Another Cautionary Tale?



Spot markets as price discrimination

1. Model and equilibrium characterization for
system with PAYG + Spot

2. Analysis of restricted case showing adding
Spot hurts revenue

3. Numerical evidence that suggests this is
typically true

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Model

@ Jobs: unit demand, associated with a unique user.

Two classes Cost
of jobs Class i jobs of waiting

value = v, rate= A, ' per unit time
i.i.d. service time c~F,(c)
mean 1/u

. (stationary, Join Private type
independent inter- spot market, or PAYG, > of a class i job
arrival time) or balk? (V C)
! i”

@ Payoff = v; —cw — m.
(Type (v;, ¢), waiting time w, payment m) .

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Modeling PAYG

@ Gl/Gl/oc system, service rate j.

Identical servers
Price per unittime=p

@ Waiting time = service time.

@ [ [waiting time] = 1/, E [payment] = p/p.

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Modeling Spot

@ GI//Gl/k system, service rate .

Preemptive resume

Bid based

k identical servers

riority queue
P v Auction based pricing

@ Waiting time = queuing delay + service time.

@ Assume unobservable queue state.

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Equilibrium

Thm: There is a * where
o Alljobs truthfully report their type and cost

» Fach type i has a cost cutoff ¢ s.t.
+ Joins Spotifc < ¢
- Joins PAYG or balks otherwise.

*See detalls in paper

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Impossibly General?

« Gl/Gl/k

 No specified auction design

- Assume reserve price is 0
- Assume priorities are not randomized

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Impossibly General?

« Gl/Gl/k

 No specified auction design

- Assume reserve price is 0
- Assume priorities are not randomized

Insights from auction theory:

 Can assume bidders just report ¢
 Waiting time will be decreasing in ¢
o All that matters is the

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Approach to Theorem

@ Given cutoffs € £ (C4.C»):

e w(c:c) £ E[waiting time in spot market if cost is c].

e m(c;c) £ E[payment in spot market for if cost is c].

Defined for any ¢ for which the queue is stable.

w(c; ) is decreasing in c, increasing in C.

m(c;T) = [, w(t;C)dt — cw(c; ).

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Main Revenue Theorem

Thm: It the revenue maximizing price for
PAYG + Spot is low enough that both types
participate in PAYG, then:

Revenue(PAYG + Spot) < Revenue(PAYG)

“Fixed and Market Pricing for Cloud Services.” Abhishek, Kash, and Key 2012



Mostly holds in other case too...
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Related Models

 "To Queue or Not to Queue” Hassin and Haviv 2003

« "Optimal Price and Delay Differentiation in Queueing
Systems” Maglaras, Yao, Zeevi 2013

 "On-demand or Spot? Selling the cloud to risk-averse
customers” Hoy, Immorlica, Lucier 2016

« "Pricing and bidding strategies for cloud computing spot
instances” Song and Guerin 201/

« "The Spot Market Strikes Back” Dierks and Seuken 2018



jonary Tale

A Caut

dBEUXIEME CLASSE | FRANCE 2010



A Cautionary Tale...

- "Paris Metro Pricing for the Internet” Odlyzko 1999

- Use this style of pricing for network QoS

- “Internet Service Classes Under Competition”
Gibbens, Mason, Steinberg 2000

- Breaks down under competition



Ways to add spot instances

Features/ Cloud

dWsS  aws

/A Azure

3 Google Cloud

( IBM Cloud

Service Name

Pricing

Shutdown Lead Time

Maximum Time Limit

Capacity Management

Cost Visibility

EC2 Spot Instances

Variable

None (depends on
extra capacity)

Spot Fleet

Spot Instance Advisor

Low Priority VMs

30 Secs

None (depends on
extra capacity)

Fixed Pricing

Preemptible VMs

30 Secs

24 Hour Limit and certain
instances within 6 hours

Instance Groups

Fixed Pricing

Transient Servers

None (depends on
extra capacity)

Fixed Pricing



https://blog-assets.spotinst.com/app/uploads/2019/03/24144037/Blog_Understanding_Excess_Capacity-01.png

Epilog

and the

Posted On: Nov 28, 2017

Amazon EC2 simplified the Amazon EC2 Spot instance pricing by moving to a model that delivers low, predictable prices that adjust
gradually based on long-term trends in supply and demand. You will continue to save up to 90% off the On-Demand instance price and
you will continue to pay the Spot price that's in effect at the beginning of each instance-hour for your running instance.

Amazon EC2 Spot now allows you to launch Spot instances via the Runinstances function, run-instances command or AWS
management console by simply indicating you want to use Spot. Unlike the old model that required an understanding of Spot markets,
bidding and calls to a standalone asynchronous API, the new model is synchronous and as easy to use as On-Demand. To launch a Spot
instance from the command line, simply specify Spot for InstanceMarketOption parameter in the call to run-instances command and
you will receive an instance ID immediately if the capacity is fulfilled.

You now have the option to request Spot instances without a bid price. Applications that use Spot and currently submit a bid price will
continue to work as is, with no changes.

All the new features are now available in all the Spot supported regions and you can start using it today via the SDK, CLI or AWS
console.

To learn more about Spot New pricing model and launching instances via Runinstances, visit the Amazon EC2 Spot page and read
the blog post. To learn about how Spot instances work, visit here.



Reservations



Long-term reservations

al.medium

Payment Option

Mo Upfront

Payment Option

Mo Upfront

Partial Upfront

Payment Option

No Upfront

fal Upfront

Upfr

Upfront

$151.00

Upfrent

STANDARD 1-YEAR TERM

Monthly*

Effective Hourly"*

CONVERTIBLE 1-YEAR TERM

Monthly*

$

Effective Hourl:

STANDARD 3-YEAR TERM

Manthly*

30000

Effective Hourly®

$0.01

Savings over On-Demand

Savings over On-Demand

Savings over On-Demand

On-Demand Hourly

On-Demand Hourly

On-Demand Hourly




Long-term reservations

Characteristic Standard Convertible
Terms (avg. discount off On-Demand) Tyr (40%), 3yr (60° Tyr (31%), 3yr (54%)

Change Availability Zone, instance size (for Yes (Using ModifyReservedinstances  Yes (Using ExchangeReservedinstances API
Linux OS), networking type API and console) and console)

Change instance families, operating system, Yes
tenancy, and payment option

Benefit from Price Reductions Yes

Sellable on the Reserved Instance Marketplace Yes (After linking account with a US Coming soon

bank account)

Standard and Convertible RI Payment Attributes

« Offering class: There are two classes of Rls: Convertible and Standard. Convertible Rls can be exchanged for different Convertible
Rls of equal or greater value.

« Term: AWS offers Standard Rls for 1-year or 3-year terms. R ed Instance Marketplace sellers also offer Ris often with shorter
terms. AWS offers Convertible Rls for 1-year or 3-year terms.

+ Payment option: You can choose between three payment options: All Upfront, Partial Upfront, and No Upfront. If you choose the
Partial or No Upfront payment option, the remaining balance will be due in monthly increments over the term.




Long-term reservations

Save up to 82% with
Rls and Azure Hybrid Benefit

72%
cost savings 82%
vs. Pay-as-you-go cost savings
vs. Pay-as-you-go

Pay-as-you-go Reserved VM Reserved
Instances VM Instances
+ Azure Hybnd

Benefit




Part-time Reservations

Windows (Peak Hours) Windows (Off-Peak Hours)

General Purpose - Current Generation

md.large $0.24 per Hour $0.234 per Hour
General Purpose - Current Generation

md.xlarge $0.479 per Hour $0.467 per Hour

md large

md.2xlarge $0.959 per Hour $0.935 per Hour

md.4xlarge $1.918 per Hour $1.87 per Hour

md.10xlarge $4.794 per Hour $4.675 per Hour




Length-based Pricing - Model

- One server

- One job arrives per time period

- Jobs want to use the server for 1+ time periods
- Shared value per unit time distribution

“Simple Pricing Schemes for the Cloud" Kash, Key, Suksompong 2017



Length-based Pricing - Options
- Complex: one price per job length
- Simple: on price per unit time

- Simpler: that price is chosen from among those used
by the complex policy

“Simple Pricing Schemes for the Cloud" Kash, Key, Suksompong 2017



Length-based Pricing - Results

- Simpler pricing gets at least 50% of the benetfits
- This is tight

- Simple pricing does too under somewhat less
restrictive assumptions but only with optimal pricing

“Simple Pricing Schemes for the Cloud" Kash, Key, Suksompong 2017



Length-based Pricing - Intuitions

- Longer jobs have higher opportunity cost

- With 2 lengths: low price gets at least the revenue
from the short jobs and high price from the long
ones

- One of these must be half the revenue

- With >2 lengths: more careful about revenue from
other lengths

“Simple Pricing Schemes for the Cloud" Kash, Key, Suksompong 2017



Online Scheduling
Fach job has:

- An arrival time a;

- A duration L;
- A deadline d;

- A value v; with density p; = 1;—11

Key assumption:
- Slack parameter s: d; —a; = s - [;

“Efficient Online Scheduling for Deadline-Sensitive Jobs." Lucier et al. 2013



Online Scheduling

Algorithm 1: Single Server Algorithm A

Event: On arrival of job j at time ¢t = a;:
1. Call the threshold preemption rule.

Event: On job completion at time t:

1. Resume execution of the preempted job with highest
value-density.

2. Call the threshold preemption rule.

Threshold Preemption Rule (?):
1. 7 < job currently being processed.
2. j* + argmax {p;~ | j* € A7*(t)}.
3. if (pjx > v - pj)
3.1. Preempt j and run j~.

“Efficient Online Scheduling for Deadline-Sensitive Jobs." Lucier et al. 2013



Making this Truthtul

ALGORITHM 1: Truthful Non-Committed Algorithm A~ for a Single Server

vt, JY(t) ={j € J | j partially processed by Ar attime t A t € [a;,d;]}.
JE(t) ={j € J | j unallocated by Ar attimet A t € [a;,d; — pD;]}.

Event: On arrival of job j at time ¢ = a;:
1. call ClassPreemptionRule(t).

Event: On completion of job j at time ¢:

. resume execution of job j' = argmax {p;/ | j' € JP(t)}.
2. call ClassPreemptionRule(%).
3. delay the output response of 7 until time d;.

ClassPreemptionRule (%):
1.7 < job currently being processed.
2. 4% < argmax {,Oj* | € JL(L‘)}
3.if (55 >~ ) -
3.1. preempt 7 and run j*.

“Truthful Online Scheduling with Committments." Azar et al. 2015




Stochastic online scheduling

e Ateachtimet €{0,...,T}, ajob j is realised from
the known distribution Dy.

« We have to accept or reject the job right away.

Theorem: There is a mechanism for stochastic online
scheduling on a single machine with unitorm lengths
that gives a 4 approximation in expectation



Trick #7: Discretization

« Assume every job has the same length I.
« We partition the time into time slots of size 2L.

« We consider two partitions: even partition (blue)
and odd partition(red).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

\-/\—/\—/WW\/




Trick #7: Discretization

 (Claim: Given a subset of scheduled jobs S,

there is a matching from each job in S to exactly
one partition.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16




Trick #7: Discretization

 (Claim: Given a subset of scheduled jobs S,

there is a matching from each job in S to exactly
one partition.




Trick #7: Discretization

 (Claim: Given a subset of scheduled jobs S,

there is a matching from each job in S to exactly
one partition.

0 1 2 3 4 5 6 7 8 ) 10 11 12 13 14 15 16
- I I —



Trick #7: Discretization

« (Choose one of the partitions randomly.
« The value we get is exactly half in expectation.

0 1 2 3 4 5 6 7 8 ) 10 11 12 13 14 15 16
- I I —



Trick #2: Expected LPs

maximizec * x maximizec * x
subject to subject to
A-x<b A-x < E|D]

x =0 x =0

Thm [DJSW11,AHL12]: The value of the right LP is an
upper bound on the expected value of the left LP



Trick #3: Prophet Inequalities

U[0,2] U[0,1] U[0,2]



Trick #3: Prophet Inequalities




Trick #4: Bellman Equation

- AKA Dynamic Programming

- Calculate a price for each time slot at each time



Mechanism

Algorithm 1 PRICING

Offline Process:

S € {851,852} uniformly at random.
. 27 + an optimal solution of EL P(IP1;
3: Rec UI‘HWPIT {‘ o PUtP H '.: 7 Ls3 r every time slot s € §
and time 0 <t < T. '

Online Scheme;
arrived:

: 6(s) + Hs 141 if the slot has not been allocated and oo otherwise
. if v; > min, #(s) then
Schedule j at minimum price time slot
4: else

Reject j.




Length Heterogeneity

« Assumel; € {1,...,L}.
« Consider log(L) layers / servers.

o k" layer is responsible for jobs with length 2%~1 <
[ < 2%

* |In each layer the ratio of the longest job to the
shortest job is at most 2.



Value Heterogeneity

Assume v; € [1,V].
Do the same trick.
Consider log(V) layers / servers.

k" layer is responsible for jobs with value 2¥71 <
v < 2K

In each layer the ratio of the highest valued job to
the lowest valued job is at most 2.



Algorithm

Price of the machine

1% 2% 4% 8% 16$ : . 2MogNlg

[1,2)

[2,4)

(4, 8)

[8, 16)

Duration of the job

[Zl, 2l+1)



Algorithm

Price of the machine
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Algorithm

Price of the machine

1$ 2% 4% 8% 16$ : . 2"$

[1,2)

[2,4)

[ =
o 4, 8) \’/
v =10%

[8, 16)

Duration of the job
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Other Related Work

- "A Truthful Mechanism for Value-Based Scheduling in
Cloud Computing” Jain et al. 201/

- “Truth and Regret in Online Scheduling” Chawla et al.
2017

- "Stability of Service under Time-of-Use Pricing”
Chawla et al. 2017/

- “Selling reserved instances in cloud computing”
Wang et al. 2015




ERA

'_-Cloud Type. g ] E_RA Algorithr:n _ ' ' Predictor- . Setup

rrpe—

ERA
_Simulation

Control I [ I e : y =
Eanel —— . - Detailed
' Results

Simulation . : :
Eha - , o T Results
S P & o . ~ b Summary

i

Figure 2: ERA Simulator Screenshot

"ERA: A Framework for Economic Resource Allocation for the Cloud" Babaioff et al.
2017



Airline Pricing?

Full Fare
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"Yield Management at American Airlines” Smith, Leimkuhler, Darrow 1992
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Lots of Options



VM Series

Type

General purpose

Memory

optimized

Storage
optimized

GPU

armance

compute

Sizes

B, Dsv3, Dv3, DSv2,
Dve, Ave, DC

Fsv2, Fs, F

Esv3, Ev3, M, GS, G,

DSve, Dv2

Lsv2, Ls

NV, NVv2, NC, NCv2,

NCv3, ND, NDv2

(Preview)

Description

Balanced CPU-to-memory ratio. Ideal for testing and development,
small to medium databases, and low to medium traffic web servers.

High CPU-to-memory ratio. Good for medium traffic web servers,
network appliances, batch processes, and application servers.

High memory-to-CPU ratio. Great for relational database servers,
medium to large caches, and in-memory analytics.

High disk throughput and |0 ideal for Big Data, SQL, NoSQL databases,
data warehousing and large transactional databases.

Specialized virtual machines targeted for heavy graphic rendering and
video editing, as well as model training and inferencing (ND) with deep

learning. Available with single or multiple GPUs.

Our fastest and most powerful CPU virtual machines with optional high-

throughput network interfaces (RDMA).




GGenerations

Previous Generation Instances

AWS offers Previous Generation Instances for users who have optimized

their applications around these instances and have yet to upgrade.

available through the AWS Management Console, AWS CLI, and EC2 API

tools.




Cluster Scheduling Contraints

- Heterogeneous Clusters
- What to do about old generations on new CPUS?

- Underclock?
- Share cores?
- Unreliable Performance?

- Failure Domains
- Fragmentation

- Cores
- Memory
- Specialized Hardware



Fragmentation
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Work on Cluster Scheduling

- "Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in
Large Cloud Platforms” Cortez et al. 201/

- "More Than Bin Packing: Dynamic Resource

Allocation Strategies in Cloud Data Centers.” Wolke et
al. 2015



When to Introduce Next Generation?

- Technology improves at a linear rate with time
- Users live for 2, have value 6t for time t technology
- 8~F with monotone hazard rate

- New generations cost C to introduce, ¢ to adopt

"Optimal Pricing and Introduction Timing of New Virtual Machines" Kash, Key, Zoumpoulis 2018



Myerson Pricing

- Revenue of only offering technology t:
(1-F@)pt
- Charge optimal price p™*:
p"=0 =F@))/r
- Do this for every technology

"Optimal Pricing and Introduction Timing of New Virtual Machines" Kash, Key, Zoumpoulis 2018



Myerson Pricing => Periodic Introductions

- New customers choose the latest technology

- Existing customers may switch, depending on the
time since last introduction

- It we instead assume periodic introductions, this also
shows Myerson is asymptotically optimal

"Optimal Pricing and Introduction Timing of New Virtual Machines" Kash, Key, Zoumpoulis 2018



With arbitrary introductions

Optimal, unif(0,1)

2
bl
k=
©
0]

Fig. 3. The average of the gain ratio of optimal total revenue over Myerson total revenue, over 100 simulations,
against the switching cost c, for discount rate 6 = 0.1,0.3,0.5,0.7, 0.9, for the uniform distribution on [0, 1].

"Optimal Pricing and Introduction Timing of New Virtual Machines" Kash, Key, Zoumpoulis 2018



Storage



Kryder's Law

0 0

Souce: Wikimedia Commons (Public Domain)



But not throughput...

Relative Improvment
Hard Disk Capacity v.s. Disk Transfer Performance

Capacity in MB

——Transfer Rate in KB/s
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Souce: R1Soft



"Max" Contracts

*  $0.01 per

Amazon C
! Except as othel i E K v luding VAT and applicable sales tax. For cus

Product Detal addr E 2se Consumption Tex. Learn

Getting Started

Pricing
UPLOAD and RETRIEVAL Requ $0.050 per 1,000 requests
RELATED LINKS

Documentation LISTVAULTS, GETJOBOUTPUT, DELETET and all other Requests
Management C Data Retrievals

that retrievals are infrequent and unusual, and data will be ed for extended pe:
n Forum age (pro-rated daily) for i u choose to retrieve more than this amount of data in & month

per gigabyte. Learn m: te for items deleted p
Get Started for Free

eate Free Account +f applicable taxes and duties, luding VAT and applicable sales tax. For custor nese billing

Region is subject apanese Consumption Tax. Leam m




"Max” Contracts

First we calculate your peak retfrisval rafe. Your peak hourly retrieval rate each month is equal to the greatest amount of data you retrieve
in any hour over the course of the month. If you initiate several retrieval jobs in the same hour, these are added together to determine
your hourly retrieval rate. We always assume that a retrieval job completes in 4 hours for the purpose of calculating your peak retrieval

rate. In this case your peak rate is 140 GB/4 hours, which equals 35 GBE per hour.

Then we calculate your peak billable retrieval rafe by subtracting the amount of data you gest for free from your peak rate. To calculate
your free data we look at your daily allowance and divide it by the number of hours in the day that you retrieved data. So in this case your

free data is 128 GB /4 hours or 32 GB free per hour. This makes your billable retrieval rate 35 GB/hour — 32 GB per hour which eguals 3

GE per hour.

To calculate how much you pay for the month we multiply your peak billable retrieval rate (3 GB per hour) by the retrieval fee ($0.01/GE)

by the number of hours in a month (720). So in this instance you pay 3 GB/Hour * $0.01 * 720 hours, which equals $21.80 to retrieve 140

GEB in 3-5 hours.,




Pelican Rack
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Figure 1: Schematic representation of the Pelican rack

“Pelican: A Building Block for Exascale Cold Data Storage" Balakrishnan et al. 2014



Frasure Coding

- Group data blocks into sets of k=15
- Add r=3 redundancy blocks
- Any 15/18 suffice to recover the data



Pelican Rack

Cooling dor]nains
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Power domains

Class: 12 fully colliding groups

Figure 2: Two fully colliding groups.

“Pelican: A Building Block for Exascale Cold Data Storage" Balakrishnan et al. 2014



Pelican Rack

Figure 4: Temperature snapshot from a single rack. The
squares are HDDs, colored by their temperature.

“Feeding the Pelican” Black et al. 2016



Glass: A New Media for a New Era?

Patrick Anderson! Richard Black! Ausra Cerkauskait¢? Andromachi Chatzieleftheriou!
James Clegg! Chris Dainty! Raluca Diaconu! Austin Donnelly! Rokas Dre s}
Alexander L. Gaunt! Andreas Georgiou! Ariel Gomez Diaz! Peter G. Kazansky? David Lara!
Sergey Legtchenko! Sebastian Nowozin! Aaron Ogus! Douglas Phillips! Antony Rowstron!
Masaaki Sakakura? Toan Stefanovici! Benn Thomsen! Lei Wang? Hugh Williams! and
Mengyang Yang'

'"Microsoft Research
ptoelectronics Research Centre, University of Southampton

476 ’
s B8 X [pum
¥ i 518 [rim]

Voxel width ~ A (wavelength) . . - SEpheai s bt ":[lSum
(b) 3D reconstruction of four measured

(a) Single voxel (top view) xels (c) Side view (8 layers)

in fused silica
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+ Read

“Demonstration of End-to-End Automation of DNA Data Storage" Takahashi et al. 2019



Storage Economics

- High throughput and low latency are expensive

- Initial pricing policies try and capture this

- Lots of need to improve on both the technology and
oricing sides




Network



A Cautionary Tale...

https://github.com/stickfigure/blog/wiki/The-Unofficial-Google-App-Engine-Price-Change-FAQ



Performance Isolation is Hara

EC2 Cluster === Local Cluster ——

20 25 30 3 40

5
Measurements

Runtime [sec]

1

Figure 1: Runtime for a MapReduce job.

"Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance"
Schad et al. 2010




Performance Isolation is Har

gle Server §4.2 Within a Single §4.3 Across Multiple Geo- . 3
irtualization Large Datacenter distributed Datacenters Hlerar‘:h)

§4.1 CPU Cache Space, §4.2.1 Live Migration, || §4.2.2 Shared §4.2.3 Shared §4.3.1 Live §4.3.2 Live
Memory, Network and Deployment and Storage Network WAN VM WAN Storage Causes
Disk Bandwidth Snapshotting of VMs Resources Resources Migration Migration

bt Table 6 - bttty Table7 + ;= ===L - Table8
| §422PARDA, | | §4.23Seawall, EyeQ, §4.3.1 VMFlockms, |
| |
I

Table 4 + Table 5 |
i
I
SRP, Pisces, I Hadrian, ElasticSwitch, : I CloudNet, ete.
l l
l l

| 1
§4.1.1 Q-Clouds, ] §4.2.1 MECOM, |
NicPic, ete. I CR/RT-Motion, | | .

I : | Horizon, QBox, | FairCloud, Gatekeeper, §4.3.2 Hirofuchi et al., Te‘:hnlques

| Pesto, Romano, efe. 1! Falloc, Oktopus, etc. Nicolae et al., efc. i

—————— o b -

PMigrate, iAware,
| VDN, VMTorrent, efc.

Fig. 1. Classification of causes and mitigation techniques of VM performance overhead from the viewpoint of 1aas cloud hierarchy.

12 Proceepings ofF THE [EEE | Vol. 102, No. 1, January 2014

"Managing Performance Overhead of Virtual Machines in Cloud Computing”
Xu et al. 2014



Other Performance Isolation Work

- "Better Never than Late: Meeting Deadlines in
Datacenter Networks” Wilson et al. 2011

- “The Price Is Right: Towards Location-Independent
Costs in Datacenters” Ballani et al. 2011

- "Performance Isolation and Fairness for Multi-Tenant
Cloud Storage” Shue, Friedman, and Shaik 2012

- “Chatty Tenants and the Cloud Network Sharing
Problem” Ballani, Jang, Karagiannis 2013




What is fair?

FAIR DIVISION ano
COLLECTIVE WELFARE
Hervé |. Moulin

Fair Division

* H. PEYTON YOUNG -




Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica
University of California, Berkeley

{alig, matei, benh, andyk

Beyond Dominant Resource Fairness: Extensions, Limitations,
and Indivisibilities

DaVID C. PARKES, Harvard University
ARIEL D. PROCACCIA and NISARG SHAH, Carnegis Meallon University




Homogeneous Divisible Goods
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Axiomatic Approach

7 Sharing Incentives (SI) — Everyone gets 1/n
2) Envy Freeness (EF) — Everyone prefers his own
3) Strategyprootness (SP) — Truth-telling is optimal

4) Pareto Optimality (PO) — Nothing wasted



L eontief Utilities



L eontief Utilities




L eontief Utilities

U(x) = mrlnd—r



Dominant Resource Fairness

"Everyone gets the same share of his dominant resource”



Dominant Resource Fairness
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Dominant Resource Fairness
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Dominant Resource Fairness
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Dominant Resource Fairness

maxx

Subject to

EXdir < 1Vr

i



Dominant Resource Fairness

Theorem: DRF satisfies SI + EF + SP + PO



Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Ra Katz, Scott Shenker, Ion Stoica
ifornia, Berkeley

ZooKeeper
quorum

Figure 2: Mesos architecture diagram, showing two running
frameworks (Hadoop and MPT).
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No Agent Left Behind: Dynamic Fair Division of Multiple Resources

Mellon Universiry, USA

Nisarg Shah

IANKASH@MICROSOFT.COM

ARIELPRO @ CS.CMU.EDU

NKSHAH®@CS.CMU.EDU



End-to-end Performance Isolation through Virtual Datacenters

Sebastian Angel*, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, Eno Thereska
Microsoft Research *The University of Texas at Austin




Small customer : one VM accessing
storage

VTOR1 VTOR2

compute storage



Small customer : one VM accessing
storage

One VM In compute
server in compute rack

compute storage



Small customer : one VM accessing
storage

One VM In compute
server in compute rack

One VHD in storage

server Iin storage rack
compute storage




Small customer : one VM accessing

storage

VTOR1 VTOR2

N —

compute storage



Small customer : one VM accessing storage

VTOR1

VTORa

compute storage



Small customer : one VM accessing

storage

VTOR1 VTOR2

P

e’ |

compute storage




Small customer : one VM accessing

storage
__TX1_JVTOR1JVTORb] RXb

VTOR1 VTOR2

P

compute storage




Small customer : one VM accessing

storage
_TX1_JVTOR1JVTORb] RXb | SSDb_

VTOR1 VTOR2

P

compute storage




Small customer : one VM accessing

storage
__TX1_JVTOR1JVTORb] RXb | SSDb | TXb |

VTOR1 VTOR2

P




Small customer : one VM accessing

storage
_TX1_JVTOR1JVTORb] RXb | SSDb | TXb JVTORa

VTOR1 VTOR2 VTORa VTORDb

P

compute storage




Small customer : one VM accessing

storage
__TX1_JVTOR1JVTORb] RXb | SSDb | TXb_|VTORa]VTOR2

VTORa VTORDb

compute storage



Result: a multi-resource ‘demand

I/
vector
| TX1 JVTOR1JVTORb] RXb | SSDb | TXb JVTORaJVTOR2] RX1

VTOR1 VTOR2 VTORa VTORDb

compute storage



Encodes resource id and proportions

VTOR1JVTORb| RXb | SSDb | TXb_|VTORaJVTOR2] RX1

VTOR1 VTOR2 VTORa VTORDb

compute storage




Encodes resource id and proportions

VTOR1JVTORb| RXb | SSDb | TXb_|VTORaJVTOR2] RX1

Any element could be a }
bottleneck to
performance

compute storage



~1075-1076 agents in a datacenter
Similar number of resources

~1-10 second control interval

DRF is Quadratic
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DC-DREF: two tactics to improve
scalability

1. Algorithmic: extending EDRF

- Operate to a time deadline chosen by operator (“control interval”)
- Variable degree of approximation: trading resource utilization for time
- Treat any resource that is e-close to exhausted as exhausted

2. HPC: maximize rate of computation
- Parallel where possible
- Optimize for thread and NUMA locality
+ SIMD vector instructions



Utilization relative to baseline
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Altruistic Scheduling in Multi-Resource Clusters

Robert Grandl*, Mosharaf Chowdhury?, Aditya Akella', Ganesh Ananthanarayanan?

. . I . . Dy . . - - . % . -
Y University of Wisconsin-Madison ~ *University of Michigan *Microsoft

* Jobs are DAGS
« Room for efficiency at no cost to fairness

« More generally fairness-efficiency tradeofts



Example

2 jobs
[Nelfele=SYelg
Fach requires T unit of processor time

DRF:
Give each 2 the processor

Efficient:
One then the other



Data anc
Machine Learning



Paying for ML Models

Products Solutions Pricing Documentation Learn  Partner Network AWS Marketplace Explore !

Amazon Rekognition Overview Al/ML Services ~ Features = Pricing Getting Started Resources FAQs Customers

US-EAST (N. VIRGINIA)

Image Analysis Tiers Price per 1,000 Images Processed

First 1 million images processed® per month $1.00
Mext 9 million images processed* per month $0.80
Mext 90 million images processed* per month $0.60

Over 100 million images processed* per month $0.40

e input images. counts as 1 image processed. Learn mare
Rekognition Face Metadata Storage Pricing

Rekognition’s IndexFaces API analyzes an image (face crop or whole image) and stores the vector representation of faces in a collection. Storage charges are applied
monthly and pro-rated for partial months.

Face Metadata Storage Price per 1,000 face metadata stored per month

Face metadata stored $0.01




Paying for Data?



Potential Issues with ML Market Design

- "Model Stealing”

- Combining Models
- Granger causality?

- Credit assignment
- Connections to explanability



The Future



Non-linear pricing’?



Linear Pricing

INSTAMNCE

amazon
webservices™

m3.medium
m3.large
m3.xlarge

m3.2xlarge

vCPU Memory (GIB) Linux/UNIX Usage
$0.067 per Hour
$0.133 per Hour

$0.266 per Hour

$0.532 per Hour



Reasons for non-linear costs

- VM type

- Service Size

- Avallibility needs
- Duration

- Scale-outs



Shapley Value / Cost

SI'(IN|— [§] —1)! _ »
- 3 B0

IN]!

SCN\{i}

- Consider all possible arrival orders
- For each order, compute marginal cost
- Pay average marginal cost



Fair Cost Sharing

——Social SAG SAG vs FPS
——Social FPS
-=-Revenue SAG

Revenue FPS
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"The Shared Assignment Game" Blocq, Bachrach, and Key 2014



"Max" Contracts

On Economic Heavy Hitters:
Shapley value analysis of 95th-percentile pricing

Rade Stanojevic Nikolaos Laoutaris Pablo Rodriguez
Telefonica Research Telefonica Research Telefonica Research
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Pretium — WAN Bandwidth Pricing

Price kind Service kind Price (USD/GB)

Cloud Traffic billed

between , . . _ 0-0.16
Amazon sites 0.02

0.19-
0.

o000
(a1} w v =

(over links)
(=]
~J

o
(]

Cumulative fraction

1 10 100
90th to 10th percentile ratio

Figure 1: Ratio of 90" percentile

to 10" percentile link utilization

shown as a cumulative distribution
Table 2: Pricing for WAN bandwidth by cloud providers (current as of 1/25/2016). function.

"Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter Transfers" Jalaparti et al. 2016



Job-based pricing

Datacenter Chosen Resource
Tuple <N, B> and
(estimated) cost

Candidate
Performance Resource Tuples Resource

' Prediction <N, B;>, Selection
Completion <N,, B>,

time goal

Job details
Tenant

Figure 3: Bazaar offers a job-centric interface.

"Bridging the Tenant-Provider Gap in Cloud Services" Jalaparti et al. 2012



Job-based pricing

“Exploiting Time-Malleability in Cloud-based Batch Processing Systems" Mai, Kalyvianaki, Costa 2013



Job-based pricing

“Exploiting Time-Malleability in Cloud-based Batch Processing Systems" Mai, Kalyvianaki, Costa 2013



Information Elicitation



What not to do




Examples of intent elicitation

Product

Information

Pay as You Go (Azure, AWS, Google)

None

Quota (Azure, AWS, Google)

Peak Demand

Fine-grained budgets (AWS)

Bound on total usage

Reserved Instances (AWS, Azure)

Heavy / light workload

Scheduled Reserved Instances (AWS)

Heavy use in a particular pattern

Sport Market (AWS) / Evictable (Azure, Google)

High / low value jobs

Tiered Storage pricing (Azure) / Glacier (AWS)

Data hot / cold

277

VM short-lived / long-lived

Usage steady / bursty

Heavy usage at a particular time




Quotas

Provide a “‘guarantee” to customers
Provide information about peak usage
Allow Azure to do capacity control

Enable customer governance of end users

But always a headache for someone
- Small quotas require customer management

- Big quotas are costly for Azure

- Manual negotiation process



Storage SLAS

CAtmp\20140301-5L O ~ A y l

SLA

$0.10




User Input SLA

Data Location Latency




Disaster Tolerance

city country region
50km 1000km 3000km




Explain Future Access Patterns

Lifetime #1




Cluster Admission

———— Deployment requests (can be rejected)

— Scale-out requests (should not be rejected)

New
Deployment
(i.e. resource
request)

Central
Controller

HaliEse T Scheduler
Controller

"On the Cluster Admission Problem for Cloud Computing" Dierks, Kash, Seuken 2019



Cluster Admission

Bl zeroth moment Mo SLA upper bound
first moment

a0 B second moment
80 |

on

utilizati

|
G0
A0
20
]
0 1

"On the Cluster Admission Problem for Cloud Computing” Dierks, Kash, Seuken 2019




Cluster Admission

Bl zeroth moment Mo SLA upper bound
first moment

on

utilizati

B second rrmmvnt
hO I
]

50

"On the Cluster Admission Problem for Cloud Computing” Dierks, Kash, Seuken 2019



Cluster Admission - Pricing

- Sell Options that permit scale outs

- Variance-based pricing

W(X) = I{fl(:X +I‘62V8r(X)

"On the Cluster Admission Problem for Cloud Computing” Dierks, Kash, Seuken 2019



Thanks!
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